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Abstract—Consider a channel having the discrete input X that
is corrupted by a continuous noise to produce the continuous-
valued output U . A thresholding quantizer is then used to
quantize the continuous-valued output U to the final discrete
output V . One wants to design a thresholding quantizer that
maximizes the mutual information between the input and the
final quantized output I(X;V ). In this paper, the structure
of optimal thresholding quantizer is established that finally
results in two efficient algorithms having the time complexities
O(NM +K log2(NM)) for finding the local optimal quantizer
and O(KM log(NM)) for finding the global optimal quantizer
where N,M,K are the size of input X , received output U and
quantized output V , respectively. Both theoretical and numerical
results are provided to verify our contributions.

Keyword: channel quantization, mutual information maxi-
mization, threshold, partition, optimization.

I. INTRODUCTION

Recently, designing a quantizer that maximizes the mutual
information between the input and the quantized output is of
great interest for many wireless applications. In particular, this
type of quantizers is an important component in the design of
low density parity check (LDPC) codes and polar codes [1],
[2], [3]. Consequently, in recent years, there is a rich literature
on finding such quantizers [4]–[13]. In general, the problem
of maximizing the mutual information over all the possible
quantizers is a hard problem. A naive exhaustive search results
in the time complexity of O(KM ) which can quickly become
computationally intractable even for the modest values of M
and K. To solve this problem, two well-known approaches
were proposed: (1) Lloyd’s algorithm for finding the local
solutions and (2) the dynamic programming for finding a
globally optimal solutions.

In the first approach, similar to the well-known Lloyd’s
algorithm that was proposed nearly fifty years ago [14], Zhang
and Kurkoski proposed a k-means algorithm for finding a
locally optimal quantizer with the complexity of O(TNKM)
where T is the number of iterations [4]. This approach can
result in a locally optimal which can be far away from a
globally optimal solution. Moreover, in some special cases

[15], T is super polynomial which severely degrades the
performance of k-means algorithm. On the other hand, under
a certain condition i.e., the binary input N = 2, the optimal
quantized outputs are the contiguous intervals [5], [16] [6],
[11]. Thus, the well-known dynamic programming can be
applied to find the global optimal solution in a polynomial
time complexity O(NKM2). Based on the matrix searching,
SMAWK algorithm [17] can further reduce the time com-
plexity of dynamic programming to O(NKM) under some
specified conditions [11], [12], [18]. It is worth noting that the
two above methods have a long history which were proposed
for finding the optimal quantizer that minimizes the Euclidean
distortion [14], [19], [20].

Although the dynamic programming and SMAWK algo-
rithm can provide a polynomial time complexity, in [19],
Wu wondered about other algorithms that can find the global
solution even faster than O(NKM). He also suggested that
the hope about these algorithms cannot be placed on the
bottom-up dynamic programming and SMAWK algorithm
because the matrix searching style of SMAWK algorithm is
already optimal. As the effort to answer the question of Wu, we
propose a completely different approach based on the structure
of optimal quantizer that results in two efficient algorithms
having the time complexities of O(NM +K log2(NM)) for
finding the local optimal quantizer and O(KM log(NM)) for
finding the global solution. Consequently, a locally optimal
solution can be found in TK time faster than the method
proposed by Zhang and Kurkoski [4] and the global solution
is still faster than the traditional dynamic programming and
other approaches in [5], [6]. Interestingly, the uniqueness of
the locally optimal quantizer that minimizes the Euclidean
distortion was discovered [21]. However, the condition for
uniqueness of locally optimal quantizer that maximizes the
mutual information is still an open problem. Thus, if one
can find some certain conditions to guarantee that the locally
optimal quantizer is unique i.e., any locally optimal solution
is the globally optimal solution then our method can find the
globally optimal quantizer in O(NM +K log2(NM)).
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Figure 1: A DMTC having N inputs and K quantized outputs
using a quantizer Q

�
=h having K + 1 thresholds.

II. PROBLEM FORMULATION

Fig. 1 illustrates a thresholding quantizer in a discrete mem-
oryless thresholding channel (DMTC). The input set is discrete
consisting of N transmitted symbols X = {x1, x2, . . . , xN}
having a given input p.m.f pX = {px1 , px2 . . . , pxN

}. Due
to a continuous noise, the received signal u ∈ U = R is
modeled via the conditional density pU |X(u|xi). In practice,
one can limit U to a finite range i.e., U = [−A,A]. We also
note that pU |X(u|xi) can have different statistics associated
with each transmitted signal xi. In the special case where
ui = xi + ni with ni’s being i.i.d, then pU |X(u|xi) is
simply a shifted version of pU |X(u|xj), ∀i, j. The quantized
outputs v is obtained by quantizing u into K discrete outputs
vi ∈ V = {v1, v2, . . . , vK} using a quantizer Q. Quantizer Q
consists of K + 1 thresholds h = {h0 = −∞ ≤ h1 ≤ h2 ≤
· · · ≤ hK−1 ≤ hK = +∞} such that Q(u) = vi, if hi−1 ≤
u < hi or vi = [hi−1, hi). An optimal quantizer Q∗ is one
that maximizes the mutual information I(X;V ), i.e, Q∗ is a
solution to the following optimization problem:

C = max
Q

I(X;V ), (1)

An important structure of the thresholding quantizer Q(u)
is that Q(u) maps all u in every disjoint interval (hi−1, hi) to
a distinct vi which is similar to the traditional quantization that
minimizes Euclidean distortion [19], [20]. The advantage of
thresholding quantizer is that it has a simple circuit implemen-
tation and is suitable for the decoder that uses Pulse Amplitude
Modulation (PAM) where the output symbols are resolved
based on the magnitude of received signals [22]. In this paper,
we will focus on maximizing the mutual information I(X;V )
over all the possible thresholding quantizers, i.e., finding the
optimal values of h∗ = {h0, h

∗
1, . . . , h

∗
K−1, hK}.

III. OPTIMALITY CONDITIONS

In this section, we establish some mathematical preliminar-
ies that will be used to develop the proposed algorithms.

A. Notations

Define pX = {px1
, px2

. . . , pxN
} = {p1, p2, . . . , pN} i.e.,

pj = pxj and define φi(u) = pU |X(u|xi) as the conditional

noise density of u given the transmitted input xi. Due to
Q(u) = vi, if hi−1 ≤ u < hi or vi = [hi−1, hi), then

p(vi|xj) =

∫ hi

u=hi−1

φj(u)du, (2)

p(vi) =
N∑
j=1

pjp(vi|xj), (3)

p(xj |vi) = pjp(vi|xj)∑N
q=1 pqp(vi|xq)

, (4)

p(xj |u) = pjφj(u)∑N
q=1 pqφq(u)

. (5)

For convenient, we also define two probability vectors xvi and
xu by

xvi = [p(x1|vi), p(x2|vi), . . . , (xN |vi)], (6)

xu = [p(x1|u), p(x2|u), . . . , (xN |u)]. (7)

Note that from (2), (4) and (6), xvi is a function of hi−1

and hi. Now, define Fj(a) =
∫ a

−∞ φj(u)du, then p(vi|xj) =
Fj(hi) − Fj(hi−1). We first discretize U into M disjoint
parts having the same width ε, then U = {u1, u2, . . . , uM},

M =
|U |
ε

. If one pre-computes and stores Fj(ut) for ∀
j = 1, 2, . . . , N and t = 1, 2, . . . ,M in O(NM), then
p(vi|xj), p(vi), p(xj |vi) can be determined in O(1).

B. Optimality condition

We first begin with some definitions.

Definition 1. Kullback-Leibler (KL) divergence of two prob-
ability vectors a = (a1, a2, . . . , aN ) and b = (b1, b2, . . . , bN )
of the same outcome set is defined as

D(a||b) =
N∑
i=1

ai log(
ai
bi
). (8)

Definition 2. A channel is a dominated conditional distribu-
tion channel if all the distributions φi(u) satisfies:

φi(u)

φj(u)
≥ φi(u

′)
φj(u′)

, (9)

for ∀ i ≤ j and u ≤ u′.

In practice, the inequality (9) is not too restricted. For
example, in typical communication scenarios [16], [23] where
the noise is additive, i.e., u = xi + n, the inequality (9)
holds for a variety of common noise distributions such as
normal distribution, exponential distribution, gamma distribu-
tion, uniform distribution, and more generally, all log-concave
distributions (Corollary 2 [16]). Now, we are ready to show
the main results.

Theorem 1. For an optimal quantizer Q∗ of DMTC having
optimal threshold h = {h0, h

∗
1, . . . , h

∗
K−1, hK}, then

D(xu=h∗
i
||xvi) = D(xu=h∗

i
||xvi+1), ∀i, (10)
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where xvi and xu are defined in (6) and (7), respectively.

Proof. Please see the Appendix A.

Theorem 2. For a given thresholds hi−2 and hi−1 that
generates vi−1 = [hi−2, hi−1), if the conditional density
φj(u) satisfies (9), then existing a unique hi that generates
vi = [hi−1, hi) such that

D(xu=hi−1 ||xvi−1) = D(xu=hi−1 ||xvi). (11)

Proof. Please see our extension version.

Since hi is unique by Theorem 2, for a given hi−2 and
hi−1, hi can be found in O(log(NM)) using the bisection

method where N is the size of vectors xu, xvi
and M =

|U |
ε

where ε is the solution resolution. For convenient, the detail
of bisection method is provided at Sec. IV-C.

IV. ALGORITHMS

Based on the structure of an optimal quantizer, we propose
two efficient algorithms, one to determine a globally optimal
solution with time complexity O(KM log(NM)) and the
other to find a locally optimal quantizer with time complexity
of O(NM +K log2(NM)).

A. Algorithm 1

Algorithm 1 O(KM log(NM)) time complexity algorithm
finding the global optimal quantizer.

1: Input: N , K, pX , U , φi(u), ε, I(X;V )opt = 0.
2: For h∗

1 ∈ U .
3: Finding h∗

2, h
∗
3, . . . , h

∗
K−1 using bisection method.

4: Computing I(X;V )h∗
1
.

5: If I(X;V )h∗
1
> I(X;V )opt:

6: I(X;V )opt = I(X;V )h∗
1
.

7: h∗ = {h0, h
∗
1, . . . , h

∗
K−1, hK}.

8: End If
9: End For

10: Output: I(X;V )opt, h∗ = {h0, h
∗
1, . . . , h

∗
K−1, hK}.

Algorithm 1 finds the global optimal quantizer in
O(KM log(NM)) time complexity as follows. Consider an
optimal quantizer Q∗ (local or global) having the optimal
thresholds h∗ = {h0, h

∗
1, h

∗
2, . . . , h

∗
K−1, hK}. From Theorem

1, we have

D(xu=h∗
1
||xv1

) = D(xu=h∗
1
||xv2),

D(xu=h∗
2
||xv2

) = D(xu=h∗
2
||xv3),

. . . = . . .

D(xu=h∗
K−1

||xvK−1
) = D(xu=h∗

K−1
||xvK ). (12)

Since h0 is given, from Theorem 2, given h∗
1, h∗

2 is unique.
Similarly, given h∗

2, h∗
3 is unique, and so on. Thus, each

optimal threshold vector h∗ = {h0, h
∗
1, . . . , h

∗
K−1, hK} is a

function of a single optimal threshold h∗
1. From (6), xvi

is a
function of h∗

i−1 and h∗
i , therefore xvi is a function of h∗

1.

Now, by back substituting through all the equations in (12),
at the last equation, h∗

1 is a root of δ(h∗
1),

δ(h∗
1) = D(xu=h∗

K−1
||xvK−1

)−D(xu=h∗
K−1

||xvK
) = 0.

(13)
By performing an exhaustive search over all the possible

values of h∗
1 ∈ U , Algorithm 1 can find all of the locally

optimal quantizers. From these local optimal quantizers, the
global optimal quantizer can be determined.

Complexity: noting that for a given h0 and h∗
1, h∗

2 can
be solved using the bisection method in O(logNM) time
complexity. Next, h∗

3 can be solved using bisection method for
a given of h∗

1 and h∗
2 and so on. Thus, the total complexity of

Algorithm 1 is O(KM log(NM)).

B. Algorithm 2
From the analysis in Algorithm 1, finding all the locally

optimal quantizer is equivalent to determining all the roots of
(13) respect to variable h1. Various fast root-finding algorithms
can be deployed to find a root of an equation i.e., Newton’s
method, Secant method, and Durand-Kerner method [24]. It
is not known whether there is an efficient algorithm that
guarantees to find all the roots of an arbitrary equation.
However, it can be verified that by setting h∗

1 = h0 will result
in δ(h∗

1) < 0 and setting h∗
1 = hK will make δ(h∗

1) > 0.
Thus, we can use the bisection algorithm to find a single root
h∗
1 with two initial values h0 and hK . The Algorithm 2 below

finds the local optimal quantizer in O(NM +K log2(NM)).

Algorithm 2 O(NM +K log2(NM)) time complexity algo-
rithm finding the local optimal quantizer.

1: Input: N , K, pX , U , φi(u), ε, θ is a small number that
controls the precise of root-finding.

2: Initialization: a = h0, b = hK , t = 0, M =
|U |
ε

.

3: While t ≤ log2(M) or |δ(ht
1)| > θ, then ht

1 =
a+ b

2
.

4: For a given ht
1, finding other thresholds

{ht
2, . . . , h

t
K−1} and xt

v1
, xt

v2 , . . . , x
t
vK

.
5: Compute

δ(ht
1) = D(xu=ht

K−1
||xt

vK−1
)−D(xu=ht

K−1
||xt

vK
).

6: If δ(ht
1) > 0 then b = ht

1

7: Else a = ht
1

8: t = t+ 1
9: End while

10: Output: For a given ht = {h0, h
t
1, . . . , h

t
K−1, hK}, com-

pute It(X;V ).

Complexity: From Theorem 2, for a given ht
1, other

ht
2, . . . , h

t
K−1 can be found in O((K − 2) log(NM)) by

solving (12) using the bisection method. Now, we have one
more outer loop to find the optimal ht

1 in O(log(NM)) that
solves (13). To evaluate δ(ht

1), we also need to evaluate xvi

∀ i that takes O(NM) as discussed in Section III-A. Thus,
the time complexity of Algorithm 2 to find a locally optimal
solution is O(NM +K log2(NM)).
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Running times of different algorithms (seconds)
Algorithm Example 1 Example 2
Algorithm 2 5.61 6.21
k-means 18.77 20.05
Algorithm 1 105.10 195.07
Dynamic programming based 209.67 317.80
Exhaustive search 2975.28 32177.20

Table I: Running times in seconds of different algorithms used
in Example 1 and Example 2.

C. Bisection algorithm

If for some x1 < x2 and if F (x1) < 0 and F (x2) > 0,
to solve the equation F (x) = 0 over the interval [x1, x2], one
can evaluate F (x1+x2

2 ) to determine whether it is larger or
smaller than 0. If it is larger than 0, we repeat the process on
the interval [x1,

x1+x2

2 ]. Otherwise, we repeat the process on
the interval [x1+x2

2 , x2]. The process repeats until the solution
is found, i.e., within some ε away from zero. The complexity of
bisection algorithm is O(logD) where D =

x2 − x1

ε
. We note

that there exist multiple fast root-finding algorithms such as
Newton’s method, Secant method, and Durand-Kerner method
[24]. These methods often require additional assumptions,
e.g., smoothness, closed-form expressions for first and second
derivatives to enable faster convergence. To that end, we use
the bisection method in this paper for its simplicity.

V. NUMERICAL EVALUATIONS

In this section, we compare the performances in terms of
run-time and accuracy of the proposed Algorithm 1 and 2
against those of exhaustive search, k-means algorithm [4], and
the dynamic programming based algorithm [5], [12].

Example V.1. We consider a communication system with an
additive noise, i.e., u = xi + ni where ni are i.i.d normal
distribution N(0, 5) and xi ∈ {−1, 1, 3, 5}, pi = 1/4, ∀
i. As a result, φi(u) = N(μi, σi) where μi = xi and
σi = 5 ∀ i. The final output V = {v1, v2, v3, v4} is obtained
by quantizing U using a quantizer Q having 5 thresholds
h = {h0, h1, h2, h3, h4}. First, we re-normalize φi(u) to be
nonzero in U = [−8, 12] and discretize U to 200 bins having
the same width ε = 0.1. Therefore, h0 = −8, h4 = 12,
M = 200 and N = K = 4. Next, we simultaneously run
the proposed Algorithms 1 and 2, exhaustive search, k-means
algorithm [4] and the dynamic programming based algorithm
[5], [12].

Example V.2. Similar to the previous example, we consider
a communication system with an additive i.i.d noise following
a normal distribution N(0, 5). However, xi ∈ {−1, 1, 3, 5, 7}
and pi = 1/5, ∀ i. The final output V = {v1, v2, v3, v4, v5} is
quantized from U = [−8, 12] width ε = 0.1 using a quantizer
Q having 6 thresholds h = {h0, h1, h2, h3, h4, h5}. Therefore,
h0 = −8, h5 = 12, M = 200 and N = K = 5. Next, we
simultaneously run the same five algorithms as in Example 1.

Table I shows the running times for five Algorithms on
the two examples. For Example 1, the proposed Algorithm

h
1
*

-8 -6 -4 -2 0 2 4 6 8 10 12

I(
X

;V
)

0

0.05

0.1

0.15

0.2
Example 2
Example 1

Figure 2: Mutual information as a function of h∗
1 for Examples

1 and 2.

2 is faster than the k-means algorithm while the proposed
Algorithm 1 is faster than the dynamic programming based
algorithm and exhaustive search as theoretically predicted. In
this example, a locally optimal solution is exactly the same as
the globally optimal solution since there is a unique maximum
as seen in Fig. 2. Consequently, all five algorithms yield the
same optimal mutual information I∗(X;V ) = 0.11702.

As for Example 2, a locally optimal solution is different
from the globally optimal solution as seen in Fig. 2. In
particular, Algorithm 1 and the dynamic programming based
algorithm provide the same globally optimal mutual infor-
mation at I∗(X;V ) = 0.17514 while Algorithm 2 and k-
means algorithm only obtain the locally optimal solution at
I(X;V ) = 0.16444. As predicted, Algorithm 2 is fastest as
shown in Table I, but it can only find a locally optimal solution.

We note that each optimal threshold vector h∗ =
{h0, h

∗
1, . . . , h

∗
K−1, hK} is a function of a single optimal

threshold h∗
1. Thus, Algorithm 1 can find all the optimal

threshold vectors (therefore all the locally optimal quantizers)
by searching exhaustively over all the possible values of
h1 ∈ U . Figure. 2 illustrates the mutual information I(X;V )
as a function of h1 in Example 1 and Example 2. As seen,
in Example 1, there is only one locally optimal quantizer,
and therefore it is also a globally optimal quantizer. As such,
all algorithms obtained the globally optimal solution. In a
general scenario, Example 2 shows that there exist multiple
locally optimal threshold vectors or multiple locally optimal
quantizers. Consequently, only Algorithm 1, the dynamic
programming based algorithm, and the exhaustive search can
guarantee to find a globally optimal solution.

VI. DISCUSSION AND OPEN PROBLEM

Algorithm 1 finds the global solution in O(KM log(NM)),
which is faster than the traditional dynamic programming [5]
and other methods in [6]. However, it is still slower than the
matrix searching SMAWK algorithm [11], [12]. On the other
hand, Algorithm 2 is the fastest state of art for finding a locally
optimal quantizer that is TK times faster than the traditional
k-means algorithm [4].
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Interestingly, the uniqueness of the locally optimal quantizer
that minimizes certain distortion metric (e.g., convex) was
discovered [21]. Thus, any locally optimal quantizer is the
globally optimal quantizer in this scenario. However, the
uniqueness of locally optimal quantizer that maximizes mutual
information between input and quantized output is still an open
problem. Thus, if one can find the conditions such that the
locally optimal quantizer is unique, Algorithm 2 can determine
the globally optimal quantizer in O(NM +K log2(NM)).

VII. CONCLUSION

In this paper, we proposed two efficient algorithms that
can find the globally and locally optimal quantizers with
the time complexities of O(KM log(NM)) and O(NM +
K log2(NM)) where N , M , K are the size of input X ,
received output U and quantized output V . Our techniques
are based on the structure of optimal thresholding quantizer
and fast root-finding bisection algorithms. Both theoretical and
numerical results are presented to verify our contributions.
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APPENDIX

A. Proof of Theorem 1

Due to limited space, we sketch the proof as follows.
Noting that I(X;V ) = H(X)−H(X|V ) and H(X) is given,
maximizing I(X;V ) is equivalent to minimizing H(X|V ) [4].

H(X|V ) =

K∑
i=1

p(vi)H(X|vi)

=
K∑
i=1

p(vi)
N∑
j=1

[−p(xj |vi) log p(xj |vi)].

Using (2), (3) and (4) and taking
dH(X|V )

dhi
respect to

variable hi and set it to zero, we have
N∑
j=1

p(vi|xj)

dhi
log p(xj |vi)+

N∑
j=1

p(vi+1|xj)

dhi
log p(xj |vi+1) = 0.

(14)
However, from (2)

p(vi|xj)

dhi
= uj(hi), (15)

p(vi+1|xj)

dhi
= −uj(hi). (16)

Now, by substituting (15) and (16) into (14) and dividing
both size to

∑N
j=1 uj(hi), we have

N∑
j=1

p(xj |hi) log
p(xj |hi)

p(xj |vi) =
N∑
j=1

p(xj |hi) log
p(xj |hi)

p(xj |vi+1)
,

which is equivalent to (10).
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